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Overview

* Introduction to Genetic Programming
* Populations and Generations
* Mutation and Crossover
* Fitness and Natural Selection

* Genetic Programming & Relative BR measurements of
doubly Cabibbo suppressed decays

* D" — K*ntn~ (a check of the method)
° AF — pKTr
* Df - KTK*n™
* Systematic uncertainties
e “Standard” and GP specific

e Conclusions
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Motivation

Initial looks at these decays showed not quite enough sahsit

Was there a way to improve our search by novel event selection
techniques? Can we combine indicators of a good event in a
more efficient way?

These analyses are good first test since candidate and
normalizing decay modes are so similar.

GP also looked like a method that might lend insight into our
data.

Keep an open mind about new ideas and how we might use them
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GP Fundamentals

To solve problems, maybe we should emulate biology and the
evolutionary process— Genetic Algorithms)

Since we will use computer programs to implement our
solutions, maybe thirm of our solution shouldbea computer
program. (& Genetic Programming)

* Applies a model of biological evolution to program
“discovery”

* [terative procedure on populations of programs

* Pioneered by John Koza, seminal referergenetic
Programming: On the Programming of Computers by
Natural Selectior{1992)

* Since 1992, more than 4,000 papers applied to a wide range
of problems
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Populations and Generations

This discussion may be a little detailed, but keep a few #hing
mind:

* Program= Organism
* Program will filter events
* We need a way to know If one filter is better than another

Genetic Programming works by transforming one group of
programs (filters) in generationinto another group of programs
In generatiom + 1. There are typically a few hundred to a few
thousand programs per generation.
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Gene Cross-over and Mutation

There are two processes which, combined with natural sefect
drive biological evolution.

1) Biological Homologous pair Chiasma
(DNA) /\
Cross-over (@) (b) (c)

Centromere —

Sister chromatids

2) Mutations in nature change the genetic code for a smatmeg
of DNA. Usually are harmful or neutral; occasionally helpfu
(better/different organism arises).

Eric Vaandering — A Search for Doubly Cabibbo Suppressedipetising Genetic Programming — p. 6



Preparatory Steps

To prepare to solve a problem with Genetic Programming, two
steps are necessary:

* Define a group of functions genes)
* Some functions may provide an input

* Other functions may perform an operation
° +,—,>, < are all “functions”
* Soare IF-THEN-ELSE
* Qutput of one function is input to another

* Determine a way to separate good programs from bad

How I'll use this:
* Input values: N-tuple variables that describe an event
* For each event: final output value keep or discard event
* How “good” is the collection of kept events?
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Tree Representation

Genetic Programming fundamentals are easier to illustirate
adopt a “Tree” representation of a program. An example &f thi
representation:

Code: Program tree
<—— Return val.
float myfunc(float x, float y) {
float val;
if (x>y) {
val = X*x +;,
} else {
val = y*y + X;
}

return val;
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Tree Representation, cont.

From a fraction of our tree, we can see a few things:

Two kinds of “nodes”
* There are functions (IE;, +, %)
* There are “terminals™(, y)

If we allow any function or terminal at
) (W) any position, then all operations must be
defined:

* |F (float)
* v+ (y > x)
* Divide by zero (if we use division)

A population of trees is built randomly choosing functioms o
terminals until all branches are terminated.
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Crossover (Recombination)

Two programs and crossover points within them are chosen.
Sub-trees are removed and swapped between trees, giving two
new “children”

It may combine the best aspects of both parents into one (@fild
course, we are just as likely to end up with the worst aspacts |
one child).
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Mutation

Occasionally we want to introduce a mutation into a program o
tree.

() Pick a parent & mutation point

[ — 1

—
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Mutation

Occasionally we want to introduce a mutation into a program o
tree.

() Pick a parent & mutation point
Remove the subtree
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Mutation

Occasionally we want to introduce a mutation into a program o
tree.

() Pick a parent & mutation point
Remove the subtree
Build a new subtree as if it were

° e a “root” tree
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Mutation

Occasionally we want to introduce a mutation into a program o
tree.

() Pick a parent & mutation point
Remove the subtree
Build a new subtree as if it were

° e a “root” tree

Mutation can often be very de-
structive in Genetic Program-
» © ©® & ming

Remember: Input variables describe event. Program/trgeibu
variable classifies event.
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Practical considerations

Obviously, a tree can grow nearly infinite in size. This isalgu
undesirable. There are ways to control this:

* Set limits on number of nodes
* Set limits on depth of nodes
* [nitial, randomly created trees are kept small

So far we've mimickedhoworganisms reproduce.
The other half of the problem ishich oneseproduce.
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Survival of the Fittest

In nature, we know that the more fit an organism is for it’s
environment, the more likely it is to reproduce. This is oh&e
basic tenets of evolutionary theory.

* QOrganisms with serious deformities are still-born or dia at
young age

* Faster, stronger, or longer lived organisms will produce
more offspring than “normal” organisms

e S e e ‘3&@
owe Rl <,
e s <

We see this behavior in nature all the time

Eric Vaandering — A Search for Doubly Cabibbo Suppresseaipetsing Genetic Programming — p. 16



Survival of the Fittest in GP

The Genetic Programming method mimics survival of the fittes
by determining a numericéitnessfor each program. Which
programs reproduce is based on this fitness.

Possibilities:
* How many events does it classify correctly?

* In how many cases does it provide the correct output?
* How well does it fit the data?
Considerations:

* The problemmustallow for inexact solutions. There may
be a singlecorrectprogram, but there must be a way to
distinguish between increasingly incorrect programs.
(Otherwise we are engaging in a random search.)

* Pathological programs- very poor fitness (still-born)
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Reproduction Probabillities

Programs are chosen randomly to “breed” and populate the nex
generation according to their fitness. We use somethinglike
roulette wheel where the size of the slot is proportionaht t
fitness of the program.

Crossover: Spin wheel twice to
select two parents.

Mutation: Spin wheel once to
select one parent.

#3 Worst

Some parents will be selected
multiple times, some not at all.

* The best program isost likelyto be chosen, but isot
guaranteedo be chosen

* The worst progranmaybe chosen
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Running the GP

Putting this all together, we are ready to “run” the GP (find a
solution).

e User has defined functions, variables, and measure of
fitness

* Generate a population of programs (few hundred to few
thousand)

* Test each program against fithess definition

* Choose genetic operation (crossover/mutation) and parent
programs to create next generation, randomly according to
fitness

* Repeat this process generation after generation
* Often tens of generations are needed to find the best
program

* Atthe end, we have a large number of programs; look at the
best one found
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Application to HEP

Ok, so all this may be interesting to computer scientistshbow
does it apply to High Energy Physics?

In FOCUS, we typically select interesting (signal, we hope)
events from background processes using cuts on interesting
variables. That is, we construct variablesthink are

Interesting, and then require that an event pass the ANDef a s
of selection criteria.

Instead, what if we give a Genetic Programming framework the
variables we think are interesting, and alldavto construct a
filter for the events?

* If an AND of cuts is the best solution, the GP can find that

This is not such a radical approad¢hg., neural networks and
boosted decision trees are used effectively in many exgetisn
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Questions

When considering an approach like this, some questions
naturally arise:

* Does it do as well as traditional methods do?
* Can we find new cuts for traditional analyses? Yes!

* How do we know it's not biased?

* We do optimize on data (but not on the signal we are
Interested in)

* To check, all optimizations are on half the events
* The tree can grow large with useless information.
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Flavor Physics in 2 Minutes

Quarks (and hadronslecayweakly by emitting a virtualW

boson which couples the up and down type quarks. Because
weak and mass eigenstates are mixed, decays cross gem&ratio
We use the CKM matrix to describe these mixing couplings.

d S b We can see that the charm)(quark
. 3 . IS coupled mostly to the strangs){ a
U little to the down @), and very little to

the bottom uarks.

Of course, ¢ — b transitions are not
- B ; kinematically allowed.

Historically, the2 x 2 sub-matrix was parameterized by the
Cabibbo angled,. with elements ofin 6. andcos 6... Since the
decay coupling is squared, the probability af a> d transition

relative toc — sissin?6,/ cos? 0, = tan? 0, ~ 5%.
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Cabibbo Suppressed Decays

Doubly Cabibbo suppressed decays can only be observed in
charm. BothW vertices are Cabibbo suppressed.

//< : /;< .
C > > S C > > d
q g q q g g
Cabibbo Favored Doubly Cabibbo Suppressed

Doubly Cabibbo suppressed decays are chosen as a first test of
the method since the final state particles are often sinelay, (

AT — pK~nt vs. A} — pK*x™). This eliminates many
possible sources of systematics arising from inexact nioglef
the selection process.

Expected relative branching ratios:tan* 6, ~ 0.25%.
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FOCUS Spectrometer

Highlights:
* ~ beam on segmented target ¢ MWPC tracking
* Silicon vertexing » ThresholdCerenkov
 EM/hadronic calorimeters e Muon detectors
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Target and Vertexing

Secondary .
Vertex p

) el 5000F T T T 1T T 9
‘ 4000 F
3000 f
2000 f
1000

of

Primary
Vertex

Some detalls of the FOCUS candidate driven vertexing

(. Distance between production and decay verti¢es,,
significance of separation (signature for weak decays)

* OoT: Significance of decay being out of target material
* CLP, CLS: Conf. Levels of production and decay vertices

* |sol: CL that tracks from decay vertex are consistent with
production vertex

* Iso2: CL that other tracks (incl. from production vertexg ar
consistent with decay vertex
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Cerenkov System

* Three multi-cell threshol€erenkov detectors
* Gives positive particle ID over limited momentum ranges

4 8 16 32 64 128
s 3-Chamber tracks
e IIIIIIIIIIIIIIIIIII)
"""""" 5-chamber tracks
p ﬁ IIIIIIIIIIIIIIIIIII )

Positive ID ranges for tracksieV /c)

* We use an ID method based on log-likelihoods

* For each particle hypothesis, find probability of
observing the # of photons seen

* Calculate differences between particle hypotheses
* Gives a continuum of particle ID values
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Variables and Operators
Give the GP lots of things to work with:

Functions (22) Variables 0+t-38,D1-37,AF —40)
X sign / AW (mp) 0,1
/ negate o, AW (Kp) #dau
+ max l/oy AW (wK) ot
— min OoT Tcon prT
xY NOT CLS AW (K) Sp
N AND CLP Trackx?’s Merr
log OR Isol OS Vertex CL Lhmax
> | XOR 502 OSAW (7K) | TSINoTS
< IF #life OS CL, REME
<=> sin Pri. OoT Real(—2, +2) DLink
f(n) cos p(AZ /DT /DT) | Int(—10,+10) Zg*) tags
One typical program: 80 nodes (40 func., 40 var.)

— 40?2 x 40*° = 2 - 102 combinations.
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D" — K ntn~
While AT — pK™n~— andD} — KTK*x~ are the decays we're
pursuing with this method)™ — K*#*tx~ is a useful check.

This branching ratio has been measured and is surprisiagig |

(almost3 tan? §.). The PDG value i9.68 4 0.08% relative to
Dt — K ntnT.

A FOCUS Dalitz and branching ratio measurement dominates

this (0.65 4= 0.08 = 0.04%), so lets see how Genetic
Programming fares vs. traditional methods
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Signals Before Optimization

Skim criteria

60000

Yield = 253184 + 658

50000

40000

30000

20000

1"|""|""|""|""|'

10000

I|III|III|III|III|III|III|III|III|III|I
1.76 1./8 1.8 1.82 1.84 1.86 1.88 1.9 192 1.94

Fit showsD*™ — K~ 7+x* normalizing mode
“Linear” histogram is DCS candidates
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Evaluating the GP

We use GP generated filters to classify e
each event as “pass” or “fail.” We use the

same filter for both CF and DCS decays

and only consider “pass” events.

Pass= return value> 0. o 6
Want to predict significance of DCS
signal: .
: SDC/SY e SCE @ (70
X
V/SpcstBocs v/ Bbcs .
N & 0 A very simple tree,

justacutord/o, > 5

Assume effect of filter on CF and DCS signal events is the same

Find Scg and Bpcs from fits to the datag events, DCS signal
blinded)
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Comparison with Cut Analysis

* From PLB 601:10-19, measured BRDBf — Ktn 7~
* Rel. BR—PLB:0.65 + 0.08 +0.04, GP:0.76 4 0.06

* Not a perfect comparison, not optimized 6n/S + B

* Extra corrections and studies in published analysis

* Similar signal to noise

* Cuts: Yield= 189 £ 24 events
* GP: Yield= 466 4 36 events

180
160
140
120
100

80
ol Wil g 60 Yield = 466 + 36
17 175 18 18 19 195 2 2.05 21 40
invariant mass K* 1t 1t Gevic?
20
SCSD+ deca on rl ht | S E I S B I N B B B
S y g 1.76 1.78 1.8 182 1.84 1.86 1.88 1.9 1.92 1.94
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Evolution of Population

wn 1.8 —] (]
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Evolution of Best Programs

Fithess
o
|_\
O

0.17

0.16

0.15

0.14

0.13

0.12

0.11

TTTT

0.1IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

5 10 15 20 25 30 35 40
Generation

Still evolving at 40 generations

o
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AF — pK T

The first decay we search fordss — pK*™7~. There are no

observations or limits. Even an observatiortaf* 4. relative to

AT — pK~n* is challenging for FOCUS, but it's even more
difficult.

The Cabibbo favored mode has Whiexchange contribution
while the DCS decay does not. (This contribution causegthe
lifetime to be about half th& (csy) lifetime.)

C S
.

q

d u
u > u

This means the expected branching ratio will be reduced.
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Pre-GP selection\ " signals

Skim criteria

= 14000/
= ~ Yield = 21052 + 357
< 12000
c S
q) —
it 10000 —
8000|—
6000 -
4000M
2000|— _ /
- Looking for < 50 events here
%l | | | |2.:|L5| | | | 2|2 | | | |2.|25| | | | 2|3 | | | |2.|35| | | | 24
GeVi/c?

Lower histogramA} — pK* 7~ candidates

Eric Vaandering — A Search for Doubly Cabibbo Suppresseaipetsing Genetic Programming — p. 35



Signals after GP selection

900 —

soF- Yield = 3067 + 60

(=]

10— Yield =1.2+6.6

Events/5 MeV/c?

600 —

400— -
C 4 ] L
C L
300—
200— B
= 2~ -
100 — N L
0 0

GP retains 3,000 of 21,000 original CF events
DCS background reducdd00 x

Fits during optimization us¢® degree polynomial.
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Comparing with Cut Method

Compare this analysis with an old attempt with normal met

GP found3070 + 60 CF and
1.2 + 6.6 DCS events

Figure of meritisoYpcs/ Ycr

6.0 4.8
— VS. ———
3070 1450

1S 0.21% vs. 0.33%
(a significant improvement)

700 -
600
500 [
400
300 [
200|

100

ﬂ\ Yield = 145@50

J

0

P i e S R

3

| |

A, standard cuts

a

I

L :
iy

Yield = 5.2 4.8

ol v

nod

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45

2.05 21 2.15 2.2 225 23 2.35 2.4 2.45

A, pK'TT
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Evolution of Population

2.5 80

(7)) _] (b}
g [ 1 N
S B O N 7))
(i B —70
ol O ]
— Oo@ —|60
W L - Oc-) -------------------------------------------------------------- .
(MD15}— %o 0
H —
- O ]
-~ L A _
| A O -
(_/)_ 11— O -
Q —30
= -
=" A ’ 0 20
oy 7
05 N h'""‘""“"‘l“"‘l'l°10m~m°msmoloxoxoxololomoxoxoxoxoxorom.m.xmoxoxoxom.moxox.) ]
| _: 10
0 B | | 1 1 1 1 | I | | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | [ I | | | N 0
0 10 20 30 40 50 60 70 80
Generation
Circles: Avg. fithess Diamonds: Best Fithess

Dotted line: Starting fitness Solid line: Avg. Size

Eric Vaandering — A Search for Doubly Cabibbo Suppresseaipetsing Genetic Programming — p. 38



Evolution of Best Programs

Fithess

0.2 .
0.18}—

B A
0.16 —

B A

B A A
0.14}— A M

B AMQMA A

n "W

“““AA

012l 4“Mn§“n K“*fzﬁnﬁg‘
0_1lIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

0 10 20 30 40 50 60 70 80

Generation

Not much progress after about 50 generations
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Best tree (12" generation)

©

() (soD
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GP-Induced Systematics

Because this method is new and unsupervised we worry about
two things:

* Are the effects of the GP filters well modeled by MC?

* Could it be finding signal where none exists or artificially
reducing backgrounds?

To address the second point, precautions are taken:
* DCS signal region is blinded
* Require a minimum number of events in DCS histogram
* Add a small penalty to fitness for each node
* Only optimize with even numbered events

Last point allows us to check “blindness.” Will also address
modeling.
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GP Bias Check

No significant descrepancies between used and unused events

CF Used CF Unused
N N
o 450 o as0fl
® °
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0 0 E
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> > o
w300 W 00k
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100 100~
50 / ~ 50—
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0 s TR SRR R TN T ST NS NN ST PRI i 0 il
2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.1 2.15
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S Yield =3.3+54 S
] - ]
= r =
v el w el
a C 3 C
= L c [
R R
(T o °F
4 4
3 O 3
2 IJ [ 2
C L~
1 1F
0 C 1 I 1 1 I 11 1 1 I 111 1 1 Oj‘ 1 1 I 1
2.1 2.25 2.3 2.35 2.4 2.1 2.15
Gevic?
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Yield =-1.9+4.2

1L
Y|
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GP Efficiency Cross-check

Want to understand if MC accurately predicts efficiencyor&ar

GP selected events2s>/ech. If the MC makes the same
mistakes in DCS and CF, this ratio is unaffected.

But we cannot see an initial DCS signal, so as a very
conservative guess, assume the difference is the same as

€GP ... €GP
compared with

€lnitial | CF-Data Cinitial |cE-MC

which we can measure.

This ratio can only be right if the MC really models what the GP

IS doing to the data. (Many studies confirm initial selectios
accurate.)
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GP Efficiency Cross-check

| Skim criteria |

| Skim criteria

14000}

12000

Events/5 MeV/c?

10000:
8000 f
6000 f
4000 f

2000|-

T Sel.%=145+04

x10°
120|—

100{—

Events/5 MeV/c?

s Sel.% =14.9+0.1
elected Events

20—

gi [T T | I B T T N I

Data

Il L L L L L L L L L L L L L | L L L
2.4 97 215 22 2.25 23 535 2.4
GeV/c?

Monte Carlo

Within errors, the CF selection efficiencies are the same.

Discrepancy i2.6 + 2.6%. | include a2.6% error on our
knOWIGdge OfGDCS/GCF-
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Other Systematic Uncertainties

In addition to GP specific sources of systematic error, cm@rsi
other sources of uncertainty on our knowledgegafs/ ecr.

1. Uncertainties in resonance structure\gf — pK—n+
* Calculate with world average incoherent and a simpler
model with noA(1520)°7
* RMSis 2.1%
2. Uncertainties in resonance structure\gf — pK* 7.
RMS of
* 100% non-resonant, 1002(1232)°K *, and 100%
pK*(892)°
* RMSis 5.3%
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D’ Initial Sample

Contributions fromD*™ — K~ 7" (mis-ID) and Cabibbo
suppressed decdyt — K~ K=" included.

Dt — K K'nt CF normalizing mode

20000

18000

16000 w7t mis-1D
14000
12000
10000

8000

D; Yield = 29544 + 442

———

6000

4000

N RN RR A AR RN RRRNRARLT

2000

L
1.75 1.8 1.85 1.9 1.95 2 2.05 2.1

GeV/c?
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Signals after GP selection

Dt — K-7tx* (mis-ID) events removed

1400 p— W —_
+F Yield=275+9.2

0ol— Ds Yield = 6100+ 85 \

1000f— Q -
C 10— I
800 |— C _
- gl—
600 |— C
- o

400 —

Events/5 MeV/c?

200 |—

v v b by by v gy
1.9 1.95 2 2.05 21

GeVv/c?

GP retains 21% of original events, DCS BG redueefl00 x

Optimization useg® degree polynomial, analysis® deg.
No real differenceZ7.9 + 9.3 events for1s' deg.)
Same systematic tests 4%, same results
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Evolution of Population
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Evolution of Best Programs
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Best tree (3™ generation)
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D " Systematic Uncertainties

Same tests as fox!, similar results.

1. Uncertainties in resonance structurdnf — K~K 7t

* Calculate with world average incoherent and a FOCUS
coherent model

* RMSis 2.6%
2. Uncertainties in resonance structurdf — KK 7,
RMS of
* 100% non-resonant, 100%;(1430)°K*, and 100%
K*(892)°K*
* RMSis 10.7%
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Systematic Uncertainties

We tabulate and add in quadrature all uncertainties onvelat
reconstruction efficiencypcs/ecr:

Syst. Unc. (%)
Source A DT
MC statistics 0.6 0.4
DCS resonances 5.3 10.7
CF resonances 2.1 216
GP filter 2.6 3.5
Total 6.3 11.6
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Including systematics

Often systematic uncertainties on limit measurements are
ignored. Instead, we use our % uncertainty in our knowledge o
the DCS vs. CF efficiencies and use a technigue from Convery
(SLAC-TN-03-001) to calculate systematic errors. Thisimoelt
builds on the Feldman-Cousins method and can be applied to
situations with more background.

In this case we get a BR probability of

A 2,2
PSR

B2 52

\/20128 + 20?9
whereB is nominal BRo 5 is its error andys/S” IS the percent
error on our knowledge of the efficiency. Assunaeg S < 0.25.
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Limit Determination

We then integraté’(B) over the physical range to find 90%
coverage/limit.

| BR Probability |

0.00f- 0.16F=
0.08|— 0.14—
0.07 :— 0.12 -
0.06— -

- 0.1
0.05 N

- 90 % CL Limit: 0.46% 0.08|— 90 % CL Limit: 0.78%
0.04

- 0.06—
0.03F- B

- 0.04—
0.02 B
0.01 0.02—

‘ 1 ‘ S B B § l 11 Ll ‘ 1 | 1 l 1 ‘ L L L

I Ll 1 1 l 1 Ll 1 1 1 1 1 1 1 1 1 1 1 1 . .
—8.02 -0.015 -0.01  -0.005 0 0.005 0.01 0.015 0.02 —8.01 -0.005 0 0.005 0.01 0.015 0.02

P(B)for At — pKtn=  P(B)forDf — KTK*n~
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Summary of measurements

With this method, we can express our measurements as either
central values with errors or limits:

Decay mode Central Value Limit (90% CL)
BR(AF—pPK ™ 7-)

srr PR (0.05+0.26+0.02)% < 0.46%
BRIDT K"K 7-)

sRD K K rt) (0.52 +0.17+£0.11)% < 0.78%

* First limits for these decays (or any DCSDBf or A}")
* Approach sensitivity of expected valuestan® 6, = 0.25%

* There is a hint of a signal i} — K™K ™7~ which would
not fit with naive theory

° Because the decdy"™ — K+ nt7~ has a Rel. BR
~ 3tan* 0., DI — KTK*7~ should bex %tan4 0.
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Conclusions (Analysis)

* These are the first limits for DCS decays®f andA '
* Efficiency of GP event selection is well modeled in FOCUS

* |'ve published two articles on this subject

* NIM article on method, appliedtBD™ — K*tnt 7
hep-ex/0503007, NIMA 551, pg. 504

* DT andA; rel. branching ratio results:
hep-ex/0507103, PLB 624, pg. 166
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Conclusions (GP Method)

| hope I've been able to give you a flavor of Genetic
Programming.

We have shown that GP can be used in HEP event selection
(this is the first application on HEP data).

Can be used to improve sensitivity over traditional
techniques (factors of'2 are possible).
Trees are very complex and any attempt to understand the
whole thing may be pointless.

* What it is doing is visible. Why it works may not be.

* Can be changed and disassembled into parts.

* One combination which appeared often is now being

used in other analyses.

| think this novel method deserves further exploration.
Thank you for your attention.
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